Basic Usage

Tracing

patch_all

To manually install the instrumentation use patch_all as early as possible in the application:

from ddtrace import patch_all
patch_all()

To toggle instrumentation for a particular module:

from ddtrace import patch_all
patch_all(redis=False, cassandra=False)

By default all supported libraries will be instrumented when patch_all is used.

Note: To ensure that the supported libraries are instrumented properly in the application, they must be patched prior to being imported. So make sure to call patch_all before importing libraries that are to be instrumented.

More information about patch_all is available in the patch_all API documentation.

Manual Instrumentation

To extend the functionality of the ddtrace library several APIs are provided.

Decorator

ddtrace provides a decorator that can be used to trace a particular method in your application:

@tracer.wrap()
def business_logic():
  """A method that would be of interest to trace."""
  # ...
  # ...

API documentation can be found here ddtrace.Tracer.wrap().

Context Manager

To trace an arbitrary block of code, you can use ddtrace.Tracer.trace() that returns a ddtrace.Span which can be used as a context manager:

# trace some interesting operation
with tracer.trace('interesting.operations'):
  # do some interesting operation(s)
  # ...
  # ...

API documentation can be found here ddtrace.Tracer().

Using the API

If the above methods are still not enough to satisfy your tracing needs, a manual API to provide complete control over starting and stopping spans.

span = tracer.trace(‘operations.of.interest’) # span is started once created

# do some operation(s) of interest in between

# NOTE: be sure to call span.finish() or the trace will not be sent to # Datadog span.finish()

API details for creating and finishing spans can be found here:

Profiling

Via module

To automatically profile your code, you can import the ddtrace.profiling.auto module. As soon as it is imported, it will start capturing CPU profiling information on your behalf:

import ddtrace.profiling.auto

Via API

If you want to control which part of your code should be profiled, you can use the ddtrace.profiling.Profiler object:

from ddtrace.profiling import Profiler

prof = Profiler()
prof.start()

# At shutdown
prof.stop()

Important

The profiler has been designed to be always-on. The start and stop methods are provided in case you need a fine-grained control over the profiler lifecycle. They are not provided for starting and stopping the profiler many times during your application lifecycle. Do not use them for e.g. building a context manager.

Handling os.fork

When your process forks using os.fork, the profiler is stopped in the child process.

For Python 3.7 and later on POSIX platforms, a new profiler will be started if you enabled the profiler via ddtrace-run or ddtrace.profiling.auto.

If you manually instrument the profiler, or if you rely on Python 3.6 or a non-POSIX platform and earlier version, you’ll have to manually restart the profiler in your child.

The global profiler instrumented by ddtrace-run and ddtrace.profiling.auto can be started by calling ddtrace.profiling.auto.start_profiler.