API¶
Tracing¶
- ddtrace.patch_all(**patch_modules: bool) None ¶
Automatically patches all available modules.
In addition to
patch_modules
, an override can be specified via an environment variable,DD_TRACE_<module>_ENABLED
for each module.patch_modules
have the highest precedence for overriding.- Parameters
patch_modules (dict) –
Override whether particular modules are patched or not.
>>> patch_all(redis=False, cassandra=False)
- ddtrace.patch(raise_errors: bool = True, **patch_modules: bool) None ¶
Patch only a set of given modules.
- Parameters
raise_errors (bool) – Raise error if one patch fail.
patch_modules (dict) –
List of modules to patch.
>>> patch(psycopg=True, elasticsearch=True)
- class ddtrace.Tracer(url: Optional[str] = None, dogstatsd_url: Optional[str] = None)¶
Tracer is used to create, sample and submit spans that measure the execution time of sections of code.
If you’re running an application that will serve a single trace per thread, you can use the global tracer instance:
from ddtrace import tracer trace = tracer.trace('app.request', 'web-server').finish()
- on_start_span(func: Callable) Callable ¶
Register a function to execute when a span start.
Can be used as a decorator.
- Parameters
func – The function to call when starting a span. The started span will be passed as argument.
- deregister_on_start_span(func: Callable) Callable ¶
Unregister a function registered to execute when a span starts.
Can be used as a decorator.
- Parameters
func – The function to stop calling when starting a span.
- current_trace_context(*args, **kwargs) Optional[Context] ¶
Return the context for the current trace.
If there is no active trace then None is returned.
- get_log_correlation_context() Dict[str, str] ¶
Retrieves the data used to correlate a log with the current active trace. Generates a dictionary for custom logging instrumentation including the trace id and span id of the current active span, as well as the configured service, version, and environment names. If there is no active span, a dictionary with an empty string for each value will be returned.
- configure(enabled: Optional[bool] = None, hostname: Optional[str] = None, port: Optional[int] = None, uds_path: Optional[str] = None, https: Optional[bool] = None, sampler: Optional[BaseSampler] = None, context_provider: Optional[DefaultContextProvider] = None, wrap_executor: Optional[Callable] = None, priority_sampling: Optional[bool] = None, settings: Optional[Dict[str, Any]] = None, dogstatsd_url: Optional[str] = None, writer: Optional[TraceWriter] = None, partial_flush_enabled: Optional[bool] = None, partial_flush_min_spans: Optional[int] = None, api_version: Optional[str] = None, compute_stats_enabled: Optional[bool] = None) None ¶
Configure a Tracer.
- Parameters
enabled (bool) – If True, finished traces will be submitted to the API, else they’ll be dropped.
hostname (str) – Hostname running the Trace Agent
port (int) – Port of the Trace Agent
uds_path (str) – The Unix Domain Socket path of the agent.
https (bool) – Whether to use HTTPS or HTTP.
sampler (object) – A custom Sampler instance, locally deciding to totally drop the trace or not.
context_provider (object) – The
ContextProvider
that will be used to retrieve automatically the current call context. This is an advanced option that usually doesn’t need to be changed from the default valuewrap_executor (object) – callable that is used when a function is decorated with
Tracer.wrap()
. This is an advanced option that usually doesn’t need to be changed from the default valuepriority_sampling – enable priority sampling, this is required for complete distributed tracing support. Enabled by default.
dogstatsd_url (str) – URL for UDP or Unix socket connection to DogStatsD
- start_span(name: str, child_of: Optional[Union[Span, Context]] = None, service: Optional[str] = None, resource: Optional[str] = None, span_type: Optional[str] = None, activate: bool = False) Span ¶
Return a span that represents an operation called
name
.Note that the
trace()
method will almost always be preferred over this method as it provides automatic span parenting. This method should only be used if manual parenting is desired.- Parameters
name (str) – the name of the operation being traced.
child_of (object) – a
Span
or aContext
instance representing the parent for this span.service (str) – the name of the service being traced.
resource (str) – an optional name of the resource being tracked.
span_type (str) – an optional operation type.
activate – activate the span once it is created.
To start a new root span:
span = tracer.start_span("web.request")
To create a child for a root span:
root_span = tracer.start_span("web.request") span = tracer.start_span("web.decoder", child_of=root_span)
Spans from
start_span
are not activated by default:with tracer.start_span("parent") as parent: assert tracer.current_span() is None with tracer.start_span("child", child_of=parent): assert tracer.current_span() is None new_parent = tracer.start_span("new_parent", activate=True) assert tracer.current_span() is new_parent
Note: be sure to finish all spans to avoid memory leaks and incorrect parenting of spans.
- trace(name: str, service: Optional[str] = None, resource: Optional[str] = None, span_type: Optional[str] = None) Span ¶
Activate and return a new span that inherits from the current active span.
- Parameters
name (str) – the name of the operation being traced
service (str) – the name of the service being traced. If not set, it will inherit the service from its parent.
resource (str) – an optional name of the resource being tracked.
span_type (str) – an optional operation type.
The returned span must be
finish
’d or it will remain in memory indefinitely:>>> span = tracer.trace("web.request") try: # do something finally: span.finish() >>> with tracer.trace("web.request") as span: # do something
Example of the automatic parenting:
parent = tracer.trace("parent") # has no parent span assert tracer.current_span() is parent child = tracer.trace("child") assert child.parent_id == parent.span_id assert tracer.current_span() is child child.finish() # parent is now the active span again assert tracer.current_span() is parent parent.finish() assert tracer.current_span() is None parent2 = tracer.trace("parent2") assert parent2.parent_id is None parent2.finish()
- current_root_span() Optional[Span] ¶
Returns the root span of the current execution.
This is useful for attaching information related to the trace as a whole without needing to add to child spans.
For example:
# get the root span root_span = tracer.current_root_span() # set the host just once on the root span if root_span: root_span.set_tag('host', '127.0.0.1')
- current_span() Optional[Span] ¶
Return the active span in the current execution context.
Note that there may be an active span represented by a context object (like from a distributed trace) which will not be returned by this method.
- property agent_trace_url¶
Trace agent url
- flush()¶
Flush the buffer of the trace writer. This does nothing if an unbuffered trace writer is used.
- wrap(name: Optional[str] = None, service: Optional[str] = None, resource: Optional[str] = None, span_type: Optional[str] = None) Callable[[AnyCallable], AnyCallable] ¶
A decorator used to trace an entire function. If the traced function is a coroutine, it traces the coroutine execution when is awaited. If a
wrap_executor
callable has been provided in theTracer.configure()
method, it will be called instead of the default one when the function decorator is invoked.- Parameters
name (str) – the name of the operation being traced. If not set, defaults to the fully qualified function name.
service (str) – the name of the service being traced. If not set, it will inherit the service from it’s parent.
resource (str) – an optional name of the resource being tracked.
span_type (str) – an optional operation type.
>>> @tracer.wrap('my.wrapped.function', service='my.service') def run(): return 'run'
>>> # name will default to 'execute' if unset @tracer.wrap() def execute(): return 'executed'
>>> # or use it in asyncio coroutines @tracer.wrap() async def coroutine(): return 'executed'
>>> @tracer.wrap() @asyncio.coroutine def coroutine(): return 'executed'
You can access the current span using tracer.current_span() to set tags:
>>> @tracer.wrap() def execute(): span = tracer.current_span() span.set_tag('a', 'b')
- set_tags(tags: Dict[str, str]) None ¶
Set some tags at the tracer level. This will append those tags to each span created by the tracer.
- Parameters
tags (dict) – dict of tags to set at tracer level
- shutdown(timeout: Optional[float] = None) None ¶
Shutdown the tracer and flush finished traces. Avoid calling shutdown multiple times.
- Parameters
timeout (
int
|float
|None
) – How long in seconds to wait for the background worker to flush traces before exiting orNone
to block until flushing has successfully completed (default:None
)
- class ddtrace.Span(name: str, service: Optional[str] = None, resource: Optional[str] = None, span_type: Optional[str] = None, trace_id: Optional[int] = None, span_id: Optional[int] = None, parent_id: Optional[int] = None, start: Optional[int] = None, context: Optional[Context] = None, on_finish: Optional[List[Callable[[Span], None]]] = None)¶
- property start¶
The start timestamp in Unix epoch seconds.
- property duration¶
The span duration in seconds.
- finish(finish_time: Optional[float] = None) None ¶
Mark the end time of the span and submit it to the tracer. If the span has already been finished don’t do anything.
- Parameters
finish_time – The end time of the span, in seconds. Defaults to
now
.
- set_tag(key: Union[str, bytes], value: Optional[Any] = None) None ¶
Set a tag key/value pair on the span.
Keys must be strings, values must be
stringify
-able.- Parameters
key (str) – Key to use for the tag
value (
stringify
-able value) – Value to assign for the tag
- get_tag(key: Union[str, bytes]) Optional[str] ¶
Return the given tag or None if it doesn’t exist.
- get_tags() Dict[Union[str, bytes], str] ¶
Return all tags.
- set_tags(tags: Dict[Union[str, bytes], str]) None ¶
Set a dictionary of tags on the given span. Keys and values must be strings (or stringable)
- get_metric(key: Union[str, bytes]) Optional[Union[int, float]] ¶
Return the given metric or None if it doesn’t exist.
- get_metrics() Dict[Union[str, bytes], Union[int, float]] ¶
Return all metrics.
- set_traceback(limit: int = 20) None ¶
If the current stack has an exception, tag the span with the relevant error info. If not, set the span to the current python stack.
- set_exc_info(exc_type: Any, exc_val: Any, exc_tb: Any) None ¶
Tag the span with an error tuple as from sys.exc_info().
- property context¶
Return the trace context for this span.
- class ddtrace.Pin(service: Optional[str] = None, tags: Optional[Dict[str, str]] = None, tracer: Optional[Tracer] = None, _config: Optional[Dict[str, Any]] = None)¶
Pin (a.k.a Patch INfo) is a small class which is used to set tracing metadata on a particular traced connection. This is useful if you wanted to, say, trace two different database clusters.
>>> conn = sqlite.connect('/tmp/user.db') >>> # Override a pin for a specific connection >>> pin = Pin.override(conn, service='user-db') >>> conn = sqlite.connect('/tmp/image.db')
- property service¶
Backward compatibility: accessing to pin.service returns the underlying configuration value.
- static get_from(obj: Any) Optional[Pin] ¶
Return the pin associated with the given object. If a pin is attached to obj but the instance is not the owner of the pin, a new pin is cloned and attached. This ensures that a pin inherited from a class is a copy for the new instance, avoiding that a specific instance overrides other pins values.
>>> pin = Pin.get_from(conn)
- Parameters
obj (object) – The object to look for a
ddtrace.pin.Pin
on- Return type
ddtrace.pin.Pin
, None- Returns
ddtrace.pin.Pin
associated with the object, or None if none was found
- classmethod override(obj: Any, service: Optional[str] = None, tags: Optional[Dict[str, str]] = None, tracer: Optional[Tracer] = None) None ¶
Override an object with the given attributes.
That’s the recommended way to customize an already instrumented client, without losing existing attributes.
>>> conn = sqlite.connect('/tmp/user.db') >>> # Override a pin for a specific connection >>> Pin.override(conn, service='user-db')
- enabled() bool ¶
Return true if this pin’s tracer is enabled.
- onto(obj: Any, send: bool = True) None ¶
Patch this pin onto the given object. If send is true, it will also queue the metadata to be sent to the server.
- class ddtrace.context.Context(trace_id=None, span_id=None, dd_origin=None, sampling_priority=None, meta=None, metrics=None, lock=None)¶
Represents the state required to propagate a trace across execution boundaries.
- trace_id: Optional[int]¶
- span_id: Optional[int]¶
- property sampling_priority¶
Return the context sampling priority for the trace.
- property dd_origin¶
Get the origin of the trace.
- class ddtrace.sampler.DatadogSampler(rules: Optional[List[SamplingRule]] = None, default_sample_rate: Optional[float] = None, rate_limit: Optional[int] = None)¶
Default sampler used by Tracer for determining if a trace should be kept or dropped.
By default this sampler will rely on dynamic sample rates provided by the trace agent to determine which traces are kept or dropped.
You can also configure a static sample rate via
default_sample_rate
to use for sampling. When adefault_sample_rate
is configured, that is the only sample rate used, the agent provided rates are ignored.You may also supply a list of
SamplingRule
to determine sample rates for specific services or operation names.Example rules:
DatadogSampler(rules=[ SamplingRule(sample_rate=1.0, service="my-svc"), SamplingRule(sample_rate=0.0, service="less-important"), ])
Rules are evaluated in the order they are provided, and the first rule that matches is used. If no rule matches, then the agent sample rates are used.
Lastly, this sampler can be configured with a rate limit. This will ensure the max number of sampled traces per second does not exceed the supplied limit. The default is 100 traces kept per second. This rate limiter is only used when
default_sample_rate
orrules
are provided. It is not used when the agent supplied sample rates are used.- sample(span: Span) bool ¶
Decide whether the provided span should be sampled or not
The span provided should be the root span in the trace.
- Parameters
span (
ddtrace.span.Span
) – The root span of a trace- Returns
Whether the span was sampled or not
- Return type
bool
- class ddtrace.sampler.SamplingRule(sample_rate: float, service: ~typing.Any = <object object>, name: ~typing.Any = <object object>)¶
Definition of a sampling rule used by
DatadogSampler
for applying a sample rate on a span- matches(span: Span) bool ¶
Return if this span matches this rule
- Parameters
span (
ddtrace.span.Span
) – The span to match against- Returns
Whether this span matches or not
- Return type
bool
- sample(span: Span) bool ¶
Return if this rule chooses to sample the span
- Parameters
span (
ddtrace.span.Span
) – The span to sample against- Returns
Whether this span was sampled
- Return type
bool
- class ddtrace.propagation.http.HTTPPropagator¶
A HTTP Propagator using HTTP headers as carrier.
- static inject(span_context: Context, headers: Dict[str, str]) None ¶
Inject Context attributes that have to be propagated as HTTP headers.
Here is an example using requests:
import requests from ddtrace.propagation.http import HTTPPropagator def parent_call(): with tracer.trace('parent_span') as span: headers = {} HTTPPropagator.inject(span.context, headers) url = '<some RPC endpoint>' r = requests.get(url, headers=headers)
- Parameters
span_context (Context) – Span context to propagate.
headers (dict) – HTTP headers to extend with tracing attributes.
- static extract(headers: Dict[str, str]) Context ¶
Extract a Context from HTTP headers into a new Context.
Here is an example from a web endpoint:
from ddtrace.propagation.http import HTTPPropagator def my_controller(url, headers): context = HTTPPropagator.extract(headers) if context: tracer.context_provider.activate(context) with tracer.trace('my_controller') as span: span.set_tag('http.url', url)
- Parameters
headers (dict) – HTTP headers to extract tracing attributes.
- Returns
New Context with propagated attributes.
Runtime Metrics¶
- class ddtrace.runtime.RuntimeMetrics¶
Runtime metrics service API.
This is normally started automatically by
ddtrace-run
when theDD_RUNTIME_METRICS_ENABLED
variable is set.To start the service manually, invoke the
enable
static method:from ddtrace.runtime import RuntimeMetrics RuntimeMetrics.enable()
- static enable(tracer: Optional[Tracer] = None, dogstatsd_url: Optional[str] = None, flush_interval: Optional[float] = None) None ¶
Enable the runtime metrics collection service.
If the service has already been activated before, this method does nothing. Use
disable
to turn off the runtime metric collection service.- Parameters
tracer – The tracer instance to correlate with.
dogstatsd_url – The DogStatsD URL.
flush_interval – The flush interval.
- static disable() None ¶
Disable the runtime metrics collection service.
Once disabled, runtime metrics can be re-enabled by calling
enable
again.